首页> 外文OA文献 >Symbolic Artificial Intelligence and Numeric Artificial Neural Networks: Towards A Resolution of the Dichotomy
【2h】

Symbolic Artificial Intelligence and Numeric Artificial Neural Networks: Towards A Resolution of the Dichotomy

机译:符号人工智能和数字人工神经网络:走向二分法的解决

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The attempt to understand intelligence entails building theories and models of brains and minds, both natural as well as artificial. From the earliest writings of India and Greece, this has been a central problem in philosophy. The advent of the digital computer in the 1950\u27s made this a central concern of computer scientists as well (Turing, 1950). The parallel development of the theory of computation (by John von Neumann, Alan Turing, Emil Post, Alonzo Church, Charles Kleene, Markov and others) provided a new set of tools with which to approach this problem --- through analysis, design, and evaluation of computers and programs that exhibit aspects of intelligent behavior --- such as the ability to recognize and classify patterns; to reason from premises to logical conclusions; and to learn from experience. In their pursuit of artificial intelligence and mind/brain modelling, some wrote programs that they executed on serial stored---program computers (e.g., Newell, Shaw and Simon, 1963; Feigenbaum, 1963); Others had more parallel, brain---like networks of processors (reminiscent of today\u27s connectionist networks) in mind and wrote more or less precise specifications of what such a realization of their programs might look like (e.g., Rashevsky, 1960; McCulloch and Pitts, 1943; Selfridge and Neisser, 1963; Uhr and Vossler, 1963); and a few took the middle ground (Uhr, 1973; Holland, 1975; Minsky, 1963; Arbib, 1972; Grossberg, 1982; Klir, 1985). It is often suggested that two major approaches have emerged --- symbolic artificial intelligence (SAI) and (numeric) artificial neural networks (NANN or connectionist networks) and some (Norman, 1986; Schneider, 1987) have even suggested that they are fundamentally and perhaps irreconcilably different. Indeed it is this apparent dichotomy between the two apparently disparate approaches to modelling cognition and engineering intelligent systems that is responsible for the current interest in computational architectures for integrating neural and symbolic processes. This topic is the focus of several recent books (Honavar and Uhr, 1994a; Goonatilake and Khebbal, 1994; Levine and Aparicioiv, 1994; Sun and Bookman, 1994). This raises some important questions: What exactly are symbolic processes? What do they have to do with SAI? What exactly are neural processes? What do they have to do with NANN? What (if anything) do SAI and NANN have in common? How (if at all) do they differ? What exactly are computational architectures? Do SAI and NANN paradigms need to be integrated? Assuming that the answer to the last question is yes, what are some possible ways one can go about designing computational architectures for this task? This chapter is an attempt to explore some of these fundamental questions in some detail. This chapter argues that the dichotomy between SAI and NANN is more perceived than real. So our problems lie first in dispelling misinformed and wrong notions, and second (perhaps more difficult) in developing systems that take advantage of both paradigms to build useful theories and models of minds/brains on the one hand, and robust, versatile and adaptive intelligent systems on the other. The first of these problems is best addressed by a critical examination of the popular conceptions of SAI and NANN systems along with their philosophical and theoretical foundations as well as their practical implementations; and the second by a judicious theoretical and experimental exploration of the rich and interesting space of designs for intelligent systems that integrate concepts, constructs, techniques and technologies drawn from not only SAI (Ginsberg, 1993; Winston, 1992) and NANN (McClelland, Rumelhart et al., 1986; Kung, 1993; Haykin, 1994; Zeidenberg, 1989), but also other related paradigms such as statistical and syntactic pattern recognition (Duda and Hart, 1973; Fukunaga, 1990; Fu, 1982; Miclet, 1986), control theory (Narendra and Annaswamy, 1989) systems theory (Klir, 1969), genetic algorithms (Holland, 1975; Goldberg, 1989; Michalewicz, 1992) and evolutionary programming (Koza, 1992). Exploration of such designs should cover a broad range of problems in perception, knowledge representation and inference, robotics, language, and learning, and ultimately, integrated systems that display what might be considered human---like general intelligence.
机译:理解智力的尝试需要建立自然和人工的大脑和思想的理论和模型。从印度和希腊的最早著作开始,这一直是哲学的中心问题。数字计算机在1950年代的问世也使计算机科学家对此成为关注的焦点(Turing,1950)。计算理论的并行发展(由John von Neumann,Alan Turing,Emil Post,Alonzo Church,Charles Kleene,Markov等人提供)提供了一套解决这一问题的新工具-通过分析,设计,对表现出智能行为方面的计算机和程序进行评估,例如识别和分类模式的能力;从前提到逻辑结论的推理;并从经验中学习。在追求人工智能和脑/脑建模的过程中,有些人编写了在串行存储的程序计算机上执行的程序(例如,Newell,Shaw和Simon,1963年; Feigenbaum,1963年);其他人则想到了更多类似大脑的并行处理器网络(让人联想到当今的连接主义网络),并为这类程序的实现写了或多或少的精确规范(例如,Rashevsky,1960; McCulloch)。和皮特斯(1943);塞尔弗里奇和内瑟(1963);乌尔和沃斯勒(1963);少数人采取了中间立场(Uhr,1973; Holland,1975; Minsky,1963; Arbib,1972; Grossberg,1982; Klir,1985)。经常有人提出出现了两种主要方法-符号人工智能(SAI)和(数字)人工神经网络(NANN或连接主义网络),而有些(Norman,1986; Schneider,1987)甚至暗示说它们在根本上是也许是不可调和的。确实,这两种明显不同的建模认知和工程智能系统的方法之间存在明显的二分法,这引起了当前对集成神经和符号过程的计算体系结构的兴趣。这个主题是最近几本书的焦点(Honavar和Uhr,1994a; Goonatilake和Khebbal,1994; Levine和Aparicioiv,1994; Sun和Bookman,1994)。这就提出了一些重要的问题:符号过程究竟是什么?他们与SAI有什么关系?神经过程到底是什么?他们和NANN有什么关系? SAI和NANN有什么共同点?它们有什么不同(如果有的话)?计算架构到底是什么? SAI和NANN范式需要整合吗?假设最后一个问题的答案是肯定的,那么为此任务设计计算体系结构有哪些可能的方法?本章试图详细探讨其中的一些基本问题。本章认为,SAI与NANN之间的二分法比实际更容易感知。因此,我们的问题首先在于消除错误的信息和错误的观念,其次是在开发系统中(也许更困难),该系统一方面利用这两种范式来构建有用的思维/大脑理论和模型,另一方面还需要健壮,通用和自适应的智能系统。这些问题中的第一个最好通过对SAI和NANN系统的流行概念及其哲学和理论基础以及其实际实现的批判性研究来最好地解决。其次是对明智和丰富的智能系统设计空间进行合理的理论和实验探索,这些系统集成了不仅来自SAI(Ginsberg,1993; Winston,1992)和NANN(McClelland,Rumelhart)的概念,构造,技术和技术。等人,1986年; Kung,1993年; Haykin,1994年; Zeidenberg,1989年),还涉及其他相关范例,例如统计和句法模式识别(Duda和Hart,1973年; Fukunaga,1990年; Fu,1982年; Miclet,1986年)。 ,控制理论(Narendra和Annaswamy,1989),系统理论(Klir,1969),遗传算法(Holland,1975; Goldberg,1989; Michalewicz,1992)和进化规划(Koza,1992)。对此类设计的探索应涵盖感知,知识表示和推论,机器人技术,语言和学习方面的广泛问题,并最终涉及显示可能被视为类似于人类的一般智能的集成系统。

著录项

  • 作者

    Honavar, Vasant;

  • 作者单位
  • 年度 1994
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号